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ACYCLIC STEREOSELECTION VIA CYCLIC HYDROBORATION. 

SYNTHESIS OF THE PRELOG-DJERASSI LACTONIC ACID? 

W. Clark Still and Kenneth R. Shaw 

Department of Chemistry, Columbia University, New York, NY 10027 

Summary: An intramolecularly directed hydroboration (4+5) provides high asymmetric induction -- 

for the construction of 1. 

We recently reported that cyclic hydroboration of acyclic dienes provides an effective 

method for the stereoselective synthesis of acyclic molecules having widely separated 

asymmetric centers. 
2 

As it happens, that study was based on earlier unpublished work in 

our laboratory which demonstrated the utility of cyclic hydroboration for acyclic stereo- 

selection and which involved a relatively concise synthesis of the well-known Prelog-Djerassi 

lactonic acid 1 394 _* In this communication we describe our preparation of racemic 1 and 

further domonstrate the value of cyclic hyd,roboration in the construction of stereochemically 

complex acyclic molecules. 

The key feature of our approach to 1 is illustrated in the following scheme and involves 

the conversion of 1 into ii. - Assuming that hydroboration of 1 can be directed intramolec- 

ularly, the strong preference of the C4-C5 bond for the conformation shown should allow 

only the desired B-face intramolecular hydroboration of the C5-C6 olefin to occur. 5 Thus 

the required stereochemistry at C4-C6 should be readily produced by efficient 1,2-asymmetric 

induction from the preexisting C4 chiral center. 
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The synthesis itself starts from methallyl alcohol. Orthoester Claisen rearrangement6 

(CH3CH2C(OEt)3, cat. HOAc; reflux, 4 hours) followed by reduction (LiA1H4, Et20; 0' C) 

proceeds in approximately 90% overall yield. A clean oxidation (Cr03*HC1.C5H5N, CH2C12; 

25' C; 1.5 hours) follows but yields only 60% of the known aldehyde z7 due to the volatility 

of the product. The remaining three carbons are then added via a stereoselective, 

kinetically-controlled Horner-Emnons-like olefination using the sodium salt of trimethyl 

phosphonopropionate8 (a. THF, -78' C, 30 sec.; b. HOAc-H20-THF quench) (81% yield). The 

Z-unsaturated ester 2 (IH NMR (CDC13) 6 5.70 (lH, dq, J = 10, 1.5 Hz), 4.72 (lH, br s), 

4.65 (lH, br s), 3.74 (3H, s), 3.37 (lH, m), 2.00 (2H, m), 1.89 (3H, d, J = 1.5 Hz), 1.70 

(3H, br s), 0.97 (3H, d, J = 7 Hz)) predominates over the E-isomer to the extent of 18:l 

and is readily freed of its isomer by simple flash chromatography' (Rf (silica gel, 5% 

EtOAc in C5H12) Z-3 0.69; E-3 0.65). Final preparation for the crucial cyclic hydroboration 

consists of reduction (LiA1H4, Et20; 0' C) and protection (tBuMe2SiC1, C3H4N2, DMF) to yield 

3 (lH NMR (CDC13) 6 5.01 (lH, br d, J = 9 Hz), 4.67 (lH, br s), 4.72 (lH, br s), 4.17 (2H, 

br s), 3.62 (lH, m), 1.96 (2H, br d, J = 7 Hz), 1.74 (3H, br s), 1.70 (3H, br s), 0.94 (9H, 

s), 0.93 (3H, d, J = 7 Hz), 0.09 (6H, s)) (96% yield for the two steps). 

When a 0.5M solution of the diene 4 (THF, -78' C), is (a) treated with 1.5 equivalents 

of fresh borane/THF, (b) allowed to warm slowly to 25' C (2 hours) and (c) worked up in the 

usual way with alkaline hydrogen peroxide, a 1:l mixture of two diols (5) is produced (92% 

yield). These two products can be shown to differ only in the asymmetry at C2 and result 
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from the stereorandom nature of the initial hydroboration. Synthetically, the mixture of 

isomers at C2 is merely an inconvenience since oxidation with Fetizon's reagent lo (Ag2C03- 

celite, C6H6; 80' C; 4 hours) smoothly yields the known lactone 6_ in better than 90% yield. 

Compound 5 is then epimerized and separated (flash chromatography, 25% EtOAc-C5H12) as 

described previously by Grieco and coworkers. 4ey11Careful 250 MHz 'H NMR of 2cl-6 ((CDC13) 

4.19 (lH, br d, J = 10 Hz), 3.68 (lH, dd, J = 8, 10 Hz), 3.50 (lH, dd, J = 6, 10 Hz), 2.47 

(lH, m), 1.29 (3H, d, J = 7 Hz), 0.96 (3H, d, J = 7 Hz), 0.89 (9H, s), 0.85 (3H, d, J = 7 Hz), 

0.09 (6H, s)) shows it to contain approximately 5% of an impurity which may have been derived 

from a-hydroboration of the C5-C6 olefin. Thus the key hydroboration of 4 appears to proceed 

with stereoselection for the desired B-face of the C5-C6 double bond to the extent of dO:l. 

Final conversion to (+)-Prelog-Djerassi lactone 1 follows Grieco's route (1. pTsOH, MeOH; 

2. Cr03-H20-H2S04-CH3COCH3) and yields material (mp (CC14) 112-113' C4, undepressed on mixing 

with authentic (+)-I; lit. 110-113° C,4c 113-114' C,4e 114-115' C,4d 116-117' C,4f 119-120° 

C4a) which is identical with an authentic sample of racemic 1 provided by Professor Gilbert 

Stork. 

Finally we should mention that the entire sequence has also been carried out on 

enantiomerically pure 2 (prepared by a relatively lengthy route from (+)-B-hydroxyisobutyric 

acid) to yield (+)-2cl-5 without loss of optical purity. Thus the primordial asynanetry at 

C4 is indeed capable of inducing all the other chiral centers in a relatively efficient way. 

Only the annoying equilibration at C2 detracts from what is otherwise a concise and efficient 

synthesis of 1. 
12 
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